Short accounts make long friends

je n’ai trouvé aucun post sur ce puzzle, c’est pourquoi je crée celui-ci.
je bloque sur ce puzzle. Mon code est trop lent/long. Je combine tous les nombres avec toutes les opérations (méthode un peu brute-force). Je me doutais bien que cela allait coincer comme ça.
Quelqu’un peut-il m’indiquer une autre piste de résolution ?

I did not find any post on this puzzle, that is why I create this one.
I block on this puzzle. My code is too slow / long. I combine all the numbers with all the operations (a little brute-force method). I suspected that it would get stuck like this.
Can someone point me to another resolution lead?
Thank you.

For any subset X of {a,b,c,d,e,f}, let S(X) be the set of all the values that can be reached using numbers from X. Find a way to compute S recursively – while memoizing the already computed values – to build an efficient enough dynamic programming approach.

It’s that kind of answer i was awaiting for. I don’t ask for “the” solution (no interest).
Thank you for this new approach. I’ll try it.
thanks again.

edit: but your approach also need to compute all that is possible from 6 numbers and 5 operators. Why should it be faster ?

@Zener Because with this approach you will structure the computation in such a way that you won’t do the same calculations too many times while, with your approach, one can guess that you’re doing the same calculations lots of times.