Let’s see if this is helpful. For Test 9, there’s obviously an awful lot of data that I could give you. Here are some key milestones:
Weights before training
Layer 0 Node 0
0.5138700783782965
0.17574130332830423
0.3086515163577402
0.5345338869535057
0.9476279257552829
0.17173630146856247
0.7022311690739501
0.2264306811738902
0.49477344681265456
0.1247203196979688
0.08389880325826761
0.38964712125698436
0.2772257971936957
0.3680707194693716
0.9834371921529236
0.535397940098959
0.7656819032345349
Layer 0 Node 1
0.646473150535707
0.7671388111855549
0.7802369211708368
0.8229514224561636
0.15193229315426773
0.6254767405919157
0.3146848274928913
0.3469010807326534
0.9172044768543934
0.5197599365002289
0.40115420771816473
0.6067583833852589
0.7854021693511876
0.9315228801833106
0.8699210741882776
0.8665246995475724
0.674520347115826
Layer 0 Node 2
0.7583996005162594
0.5818934578364219
0.38924772403633584
0.35563473559712744
0.20023207375790555
0.8269268394573251
0.4159033142104295
0.4635219273453215
0.9791629970907992
0.12643645197452813
0.2126366990677252
0.9584513734832645
0.7374629344499963
0.4090564630036505
0.7801130669098874
0.7578992507224434
0.9568418436482744
Layer 0 Node 3
0.028096026288390172
0.31872752416819683
0.7569342049569516
0.24299497168650616
0.5895422145675598
0.04342443404878696
0.9560249671135214
0.31913313098211454
0.059359821052923714
0.4418761257277225
0.9150198455504234
0.5722473452669788
0.11883804254179729
0.5697709799603424
0.25204809347728646
0.49585787416242894
0.23673403134417442
Layer 1 Node 0
0.4769608911485229
0.40609315196335927
0.8729976121676143
0.42696332625437683
0.35821810288271777
Weights after one training iteration
Layer 0 Node 0
0.5138631380996322
0.16471440843451254
0.29668292785620726
0.5242009889573889
0.9448970579178643
0.1585097893613768
0.6892873981482288
0.22318864841620056
0.4846953755239628
0.11025889450512077
0.08065972408530163
0.38172534214071274
0.2686561669157504
0.3601554260141946
0.9715533452041712
0.5319256467213828
0.742311348060544
Layer 0 Node 1
0.6511378747911312
0.7720511542711591
0.7824469109930823
0.8259249293229264
0.15479240614523745
0.6276944479846109
0.3184425195416554
0.3475029946448822
0.9167113342494151
0.5247768846758138
0.4049463240147305
0.609688624244224
0.787208045923412
0.932547687341274
0.8723873804016029
0.8690633719265544
0.6837922532405741
Layer 0 Node 2
0.7484571714562052
0.5612919634207927
0.3605795918020662
0.3279540324707262
0.189790137652342
0.8061127502928597
0.3821487213648927
0.45752522886363084
0.9719583520742551
0.09734001486155096
0.1966387615186809
0.9448005621321711
0.7260784044214973
0.3997184966687958
0.7596564209245137
0.7427074440305291
0.8998599307623979
Layer 0 Node 3
0.01354327377378141
0.2916477954914482
0.73912033212648
0.2096252891315484
0.5741033759935515
0.019176234209632596
0.9339780292093736
0.3067235629604105
0.029624678185721065
0.41011302276399064
0.9081078987178246
0.5614028084898263
0.08982183799424773
0.5452934060521041
0.21316329297539316
0.4727653251392619
0.17232565752802995
Layer 1 Node 0
0.14610666190110919
-0.11556137592902982
0.39850006802085675
0.27947215890805926
-0.266966525191905
Weights after all training iterations
Layer 0 Node 0
0.5319061942634977
-0.458067502842384
0.4915197773172106
0.21827613203865398
1.1601775803628827
0.29440500509970624
0.7923437677186648
0.19327627117891075
0.4738448773463162
-0.14915872519150175
-0.5553635479709592
0.10391852745921809
0.09853292868633451
0.0071297709934608185
0.8109033150030133
0.3421953468194558
-0.41037465230635767
Layer 0 Node 1
0.7284605591034866
0.8607108421201679
0.8977140738852808
0.9178229544948123
0.27801816077719876
0.7367115494717716
0.49021916106872
0.45830040005775063
0.9467995581894103
0.7029031223655374
0.49836835354366343
0.6948069919714179
0.8911503837847996
0.9931223442438667
0.9540811203946675
0.9195803379221197
0.968812450627726
Layer 0 Node 2
0.7448146965050647
0.5463550006765606
0.3485644498749925
0.3044634889321021
0.22406047378300317
0.8030415555165012
0.3774675627868416
0.5452049197495463
0.9708935927445964
0.11386056030798249
0.2037324790935415
0.9509150604924208
0.7698947806676518
0.3995902239291382
0.7401036120036572
0.7191971006432387
0.9052397003545852
Layer 0 Node 3
1.7331219486924003
1.5059211380875968
1.8194993293603725
1.0349900697640984
1.1937827412926632
1.772783039366032
1.3787762517075595
2.0399376234021336
1.3750364414332243
0.8194773688909447
1.959394218917327
1.6113701241217657
1.3042625124436613
0.6051457537031166
1.2836333629488013
1.7608954795698548
-10.760467473044894
Layer 1 Node 0
1.2227750609911112
-2.3085664367313488
-1.1036968691571816
10.023432762374446
-2.871544462296784
Output before training
0.9234163451037934
0.9248494696279053
0.9247091475067545
0.9257523729747934
Output after one training iteration
0.6014626867145206
0.605273928088629
0.6034946560045894
0.6064469752835443
Output after all training iterations
0.02390042747686394
0.11046779833635939
0.7370635517892113
0.9637416082116796